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Correlation in complex networks follows a linear relation between the degree of a node and the total degrees
of its neighbors for six different classes of real networks. This general linear relation is an extension of the
Aboav-Weaire law in two-dimensional cellular structures and provides a simple and different perspective on
the correlation in complex networks, which is complementary to an existing description using Pearson corre-
lation coefficients and a power law fit. Analytical expression for this linear relation for three standard models
of complex networks: the Erdos-Renyi, Watts-Strogatz, and Barabasi-Albert networks is provided. The slope
and intercept of this linear relation are described by a single parameter a together with the first and second
moment of the degree distribution of the network. The assortivity of the network can be related to the sign of
the intercept.
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Complex networks are a convenient model for studying
the topological and structural property of complex systems
�1,2�. It consists of nodes which interact among themselves
via their connections. Mathematical quantities such as the
degree distribution, cluster coefficient, and the average short-
est path length are the standard properties in a preliminary
characterization of networks. In this paper, we focus on the
neighbor connectivity that relates to the degree correlation
among the nodes. By extending the Aboav-Weaire Law �3,4�,
which was well studied for two-dimensional cellular patterns
such as soap froth �5,6�, we find that it is also a good mea-
sure to describe the correlation in a wide variety of real and
artificial networks in higher dimensions. The complex net-
works that we have checked are the neural networks �7�,
food webs �8�, word co-occurrence �9,10�, scientist collabo-
ration �11�, internet �12�, and yeast protein interaction
�13�.We also report here the Aboav’s parameters for several
standard models: the Erdos-Renyi �14�, Watts-Strogatz �15�,
and Barabasi-Albert networks �16�. We find that the results
on the assortivity of the network using the Aboav-Wearie law
are consistent with conclusions based on the analysis of the
Pearson correlation coefficient.

Originally, the Aboav-Weaire law was discovered from
the empirical analysis of two-dimensional cellular structures
in metal grains and later extended to a variety of cellular
structures in two and three dimensions. The findings of
Aboav provide a linear relation between the total degrees of
nearest neighbor nM�n� with the degree of the cell nM�n�
=5n+8, where M�n� is the mean of number of edges of
neighboring cells surrounding a cell with n edges �3�. Weaire
generalizes Aboav’s observation and restates this observation
in terms of the variance �2 of the degree distribution of the
cellular network �4�:

M�n� = A +
B

n
;

with

A = 6 − a� +
b�2

6
,

B = 6a� + �1 − b��2. �1�

This form for the expression of M�n� is usually tested em-
pirically by a plot of nM�n� vs n, which should be linear with
slope A and intercept B. As the Aboav-Weaire law can be
understood as a statement on the topological correlation of
the cellular network, we attempt to generalize this empirical
law in two-dimensional networks to high dimensional com-
plex network, with numerical testing of its validity as well as
analytical results on some common complex network such as
Erdos-Renyi, small world, and scale free networks.

Before we analyze the linearity of nM�n� vs n, we would
like to mention other more commonly used descriptions of
correlation. The first one is the Pearson correlation coeffi-
cient r, which was applied by Newman �17� for networks

r =
1

�q
2�

jk

jk�ejk − qjqk�

with

�q
2 = �

k

k2qk − ��
k

kqk�2
. �2�

Here ejk is the joint probability distribution of an edge con-
necting two nodes which have degree j and k, respectively,
while the remaining degree qk=� jejk is the degree distribu-
tion of a node connected by an edge of another node of
degree k. Note that −1�r�1. Many networks in nature
show “assortative mixing” �18–20�, the term assortative mix-
ing means that there is a preference in network that a high-
degree node connecting to another high-degree node. In con-
trast, there is another sort of degree correlation in a network
call “Disassortative mixing,” i.e., a high-degree node prefers
to attach to low-degree node. If r�0, the network exhibits a
assortative mixing phenomenon. Examples of an assortative
mixing network can be found in a coauthorship network, film
actor collaborations, etc. For r�0, we have disassortative*Email address: phszeto@ust.hk
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mixing, such as the internet network, protein network, food
web, etc.

Another commonly used description �18� is to consider
the mean degree of the nearest neighbor of a node with de-
gree n, denoted by knn�n�, which is exactly the quantity M�n�
we consider in Aboav’s empirical law. From the study of the
network of interacting proteins and the internet, Maslov and
Sneppen �18� observed that the mean degree of nearest
neighbors obeys a power law knn�n��n−l, with l=0.6 and l
=0.5, respectively, for protein networks and the internet.
These works provide an alternate way to describe the corre-
lation between nearest neighbors in a complex network.

Here, we will start our data analysis by checking the va-
lidity of the Aboav-Weaire law, knn�n�=M�n�=A+ �B /n�.
What we find is that the data analysis using the AW law to fit
M�n� is equally good and often better than the fitting of M�n�
by a power law. There are three basic reasons for our advo-
cate of fitting nM�n� vs n by a linear relation. The first one is
that the slope A and intercept B can all be expressed in terms
of the Aboav parameter a and the mean and variance of the
degree distribution of the network. This single parameter de-
scription for the correlation is similar in its simplicity when
compared to the Pearson correlation parameter, which is
harder for the experimental analysis. The second reason,
which is more important theoretically, is that for the standard
networks commonly discussed in the literature, such as the
Erdos-Renyi, Watts-Strogatz, and Barabasi-Albert networks,
we have succeeded in computing the Aboav parameter ana-
lytically. Thus, we have provided a theoretical framework for
further discussion of the modeling of complex networks
from the point of view of the correlation. The third reason is
that the classification of a network being assortative mixing
or disassortative mixing can be simply inspected from the
intercept B in our data analysis. This is an alternative way to
the classification of the assortative mixing property of net-
works by the Pearson coefficient. After all, we feel that the
simplicity in the linearity of nM�n� vs n should be more
appreciated in the network literature.

First we show that there is a relation between A and B,
due to the topological constraint of the network: Let us sum
nM�n� for all nodes in the network. This is equivalent to sum
up the degree of each node �of degree n� by the times of that
node being connected �which is also n�, so that this sum also
gives the second moment of NP�n�

	 nM�n�NP�n�dn =	 n2NP�n�dn = N
n2� .

This result gives the relation between A and B when we
assume the Aboav-Weaire law of M�n�

	 nM�n�P�n�dn =	 n�A +
B

n

P�n�dn

= 
n2� Þ A
n� + B = 
n2� �3�

To relate to the conventional notation in the Aboav Weaire
law, we define a= 
n�−A, where the parameter a can be re-
lated to the parameter a� in Eq. �2� as a=a�−b�2 /6. We then
deduce that B=�2+a
n�. When B�0, or a��2 / 
n�, then

M�n�=A+ �B /n� will decrease with n, implying that high-
degree nodes like to connect to low-degree nodes, and vice
versa. This corresponds to the disassortative mixing property.
On the other hand, if B�0, or a��2 / 
n�, the higher-degree
nodes will prefer connecting to other high-degree nodes, cor-
responding to the assortative mixing property. When B=0, or
a=�2 / 
n�, we have the special case where the nearest neigh-
bor connectivity is independent with the degree of the nodes,
implying no correlation among the degrees of nodes and its
neighbors. We call such networks exhibiting no assortative
property.

After explaining the basic topological relation, we inves-
tigate both numerically and analytically the validity of the
Aboav-Wearie law in several well-studied artificial network
models. Our analysis include the Erdos and Renyi random
network �ER model�, the Watts and Strogatz small world
network model �WS model�, and the scale free network of
Barabasi and Albert �BA model�. The analytical results are
listed in Table I, in which numerically we have verified the
validity of the Aboav-Weaire Law for these models. One
should note that for the BA model, there are two sets of
nodes, the set of offspring and the set of the ancestors. There
is no predefined mechanism of generating the set of ancient
nodes in the original BA model. Here we assume that there
are m0 ancient nodes which are fully interconnected with an
average degree 
n�=m0−1. As the BA network grows from
the ancient set, a new node with a degree m �1�m�m0� is

FIG. 1. The linear fit of nM�n� vs n for �a� neural network, food
web, word co-occurrence, and protein interaction network. �b� AS
level internet and scientist collaboration.
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added into the network at each time step. By choice we
choose m= 1

2 
n�= 1
2 �m0−1� so that the average degree 
n� is

always 2m. In Table I, we have listed the analytical result for
the offspring nodes only, which should be a good approxi-
mation for the entire set if the total number of nodes N is
large so that the set of ancestors only create small correc-
tions. However, we must mention that the sum rule result on
the relation between A and B in the case of the offspring in
the BA model does not apply, since the relation between A
and B in the Aboav law rely on a sum rule that includes all N
nodes in the network.

Now, it is of great interest to see if the Aboav-Weaire law
also applies in real world networks. We have investigated six
different networks.

�1� Food web �8�: It describes the relation of predators
and preys of the Ythan river in Newburgh. The food web
consists of 92 species. Based on a field observation, 409
links are made.

�2� Neural network of C. Elegans �7�: The nodes are the
neurons of C. Elegans and the links represent the connection
of synapse among neurons.

�3� Word co-occurence �9,10�: A language network estab-
lished from the English version article of European human

rights. Each word that appeared in the paper is treated as a
node in network. The connection among the node is based on
the co-occurrence of the words of the sentences.

�4� Yeast’s protein interaction �13�: The proteins in yeast
S. Cerevisiae are nodes connected by identified undirected
physical interactions

�5� Autonomous system level of internet �11� �AS level
internet�: The internet can be decomposed into separated
subsets in different levels. In the autonomous level, each
domain is represented by a node of networks and each link is
an interdomain connection.

�6� Author collaboration in scientific papers �12�: The
nodes are authors and the connections refer to the joint au-
thorship in a scientific paper.

These real networks are considered as undirected net-
works in our analysis of the Aboav-Weaire law, though in
reality a more accurate description should take into account
the direction of the links. The results are shown in Table II
and Fig. 1. In Table II, the parameters A and B are obtained
by weighted linear least square fitting. Since each data point
in nM�n� usually contains more than one sample node, each
data for a given n will have its variance taken into account in
our linear fit. One can also show that the Aboav parameters

TABLE I. Correlation in different artificial networks.

Artificial network A B a Mixing Property

ER model 
n�+1 0 −1 No Assortative

WS model 
n� �2 0 Disassortative

BA model
�offspring�


n�
4

ln� N


n� + 2

 + 
n� 0 − � 
n�

4
ln� N


n� + 2

� No Assortative

TABLE II. Correlation in different real networks. Here N is the number of nodes in the network, 
n� is the
mean degree, � is the standard deviation of degree distribution; A is the slope and B the intercept in the linear
fit of nM�n� vs n. The generalized Aboav parameter for complex networks is defined by a�
n�−A and the
Pearson correlation coefficient r is also tabulated for reference.

Network
Size

N

Average
degree


n�

Standard
deviation
of degree

�
Slope

A
Intercept

B

Aboav
parameter

a

Pearson
correlation

r

Food web in
Ythan river

85 7.78 7.13 12.9±0.6 31±3 −5.1±0.6 −0.28

Neural
network

219 15.16 9.35 18.5±0.7 81±13 −3.3±0.7 −0.16

Word co-
occurrence
network

444 4.63 11.64 7.8±0.5 2±2 −3.2±0.5 −0.05

Yeast’s
protein-protein
interaction

2115 2.12 9.29 3.2±0.3 5.3±0.6 −1.1±0.3 −0.51

AS Internet 11405 3.15 5.13 86.0±1.0 753±87 −83.0±1.0 −0.16

Scientist
collaboration

52909 9.27 15.37 55.0±1.0 −77±7 −45.0±1.0 0.36
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can be related to the Pearson coefficient in the following
relation:

r =
1

�q
2�A
n2� + B
n�


n�
− ��

j

jqj�2
 . �4�

In summary, we have shown the validity of the Aboav-
Wearie description of the neighbor correlation in a wide class
of real networks, as well as in three standard models of com-
plex networks, the ER, WS, and BA networks. The linearity
of the total degrees of the neighbors �nM�n�� of a node with
degree n can be summarized by the single parameter a,
which is shown to be related to the Pearson correlation co-
efficients. The simplicity of this law and its generality in

complex networks in high dimensions make it a very conve-
nient tool for the topological classification of networks, here
specifically to the question of the assortivity of the network.
This has been shown to be related to the intercept B. Our
extension of the Aboav empirical analysis for two-
dimensional cellular patterns to complex networks provides a
different perspective on correlations from the power law fit-
ting of the data.
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